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A On-Line Appendix on Large Deviations Analysis

In this section, we give a quick review of large deviation analysis (Dembo & Zeitouni (1998) provides

a standard reference); summarize relevant results from Avram et al. (2001); and specialize those to

our setting to calculate various quantities of interest in closed form.

To justify the time scales implicitly assumed by the large deviations analysis in the context of

our motivating application consider a hub or a sorting center. A typical FedEx hub18 has a sorting

processing capacity in the order of tens of thousands of packages per hour, or several packages

per second. With processing times of seconds, the appropriate time unit of measurement is also

seconds. Given that FedEx quotes delays in the order of days (after subtracting the deterministic

travel times from the quoted delay), it is also natural to measure the delays experienced in a hub in

hours. The relevant performance criterion thus is whether queueing delays exceed several hours, i.e.

several thousands of seconds, which is large compared to the time to process a package. Therefore,

adopting a second as a time unit of measurement, the large deviations estimate is appropriate in

our motivating application. Moreover, in our analysis the large deviations estimate is used only for

class 2 which is precisely the class experiencing most congestion under the greedy scheduling rule.

A.1 Large Deviations Primer

Roughly speaking, most large deviations analysis can be divided into two major parts: proving a

Large Deviations Principle (LDP), and solving the associated Variational Problem (VP), which in

turn gives the rate function of the LDP. To be specific, a LDP for the steady-state distribution of

Q amounts to the following approximation:

P
µ
Q

u
∈ A

¶
≈ exp

½
−
µ
inf
v∈A

I(v)

¶
u

¾
for u large, (33)

where A is a measurable subset of R2+ and I(v) is the rate function, defined as follows. Let ψ denote

the Skorohod map, which essentially maps any sample path of the Brownian motion process into

a queue length sample path, that is nonnegative, by exerting minimal amount of control at the

boundaries of the positive quadrant. Then define the inner product < , >: R2 ×R2 → R by

< v,w >= vΓ−1w (34)

18For example, the processing capacity of the Dallas hub is 22,500 packages per hour; as of January 19, 2007

available at http://www.findarticles.com/p/articles/mi_m0EIN/is_2005_Sept_22/ai_n15625572.
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with the associated norm ||v|| = √< v, v >. Recall that Γ is the covariance matrix, so || · || is

the natural norm to consider. Then for each v ∈ R2+ the rate function is defined by the following

variational problem

I(v) ≡ inf
T≥0

inf
x∈H2, ψ(x)(T )=v

1

2

Z T

0
||ẋ(t)− θ||2 dt, (35)

where H2 is the space of all absolutely continuous functions x(·) : [0,∞)→ R2 which have square

integrable derivatives on bounded intervals and have x(0) = 0. Given v ∈ R2+, if a path x(·) is such

that ψ ◦ x(T ) = v for some T ≥ 0, and

1

2

Z T

0
||ẋ(t)− θ||2 dt = I(v),

then, as in Avram et al. (2001), we will call x an optimal path for the VP (35) with optimal value

I(v). In addition, ψ(x) is called an optimal reflected path. The VP (35) is solved explicitly in

Avram et al. (2001), which also characterizes the corresponding optimal path explicitly.

A.2 Summary of Avram, Dai and Hasenbain (2001)

Avram et al. (2001) study a variational problem that arises in Large Deviations analysis of the

steady-state distribution of SRBMs. For the two-dimensional case, the authors provide an analytical

solution to the VP, which gives an appealing characterization of the optimal path (which in turn

characterizes how rare events are most likely to occur) to a given point in the quadrant and also

provides an explicit expression for the large deviations rate.

To be more specific, one constructs a “cone of boundary influence” that determines the nature

of optimal paths in different regions of the quadrant. When a point v ∈ R2+ is not in either of

the cones, the optimal path is a direct, linear path. When v is contained in one of these cones,

however, the optimal path first travels along a boundary, and then travels directly to v. Moreover,

such a path leaves the boundary and enters the interior at a unique entrance angle which can be

determined directly from the problem data.

To state the main theorem of Avram et al. (2001), we need to define the cone Ci associated with

the face Fi = {x ∈ R2+ : xi = 0} for i = 1, 2. For a face Fi, cone Ci defines a region of boundary

influence on the solutions to the VP. The authors show that the boundary influence depends on

two quantities which they term “exit velocity” and “entrance velocity,” which in turn define the

“reflectivity” of a face.
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Let ai and eai denote the exit and entrance velocities associated with face Fi, respectively, for
i = 1, 2. The velocities for our specific Brownian model follow from formulas (3.2) and (3.4) of

Avram et al. (2001):

a1 = 1
κ2+2ρκ+1

⎛⎝ (1− κ2) θ1 − 2(κ+ ρ) θ2

−2κ (1 + ρκ) θ1 − (1− κ2) θ2

⎞⎠ , a2 =

⎛⎝ − θ1

θ2 − 2 ρ θ1

⎞⎠ ,

ea1 = 1
κ2+2ρκ+1

⎛⎝ −(1− κ2) θ1 + 2(κ+ ρ) θ2

−2 θ1(ρ+ κ) + θ2(4ρ
2 + 4ρκ+ κ2 − 1)

⎞⎠ , ea2 =
⎛⎝ θ1(4ρ

2 − 1)− 2 ρ θ2
2 ρ θ1 − θ2

⎞⎠ ,

where κ = σ1/σ2. Clearly, eaii = −aii for i = 1, 2, which indeed holds in general, cf. Avram et al.

(2001). Moreover, the entrance velocity eai is simply the “symmetry” of the exit velocity ai around
the face Fi with respect to the inner product introduced in (34).

A face Fi is called reflective if the ith component of ai is negative, that is aii < 0. Equivalently,

Fi is reflective if and only if eaii > 0. When Fi is reflective, Ci is defined to be the cone generated

by ei and eai, where ei is the directional vector on face Fi, normalized so that || ei|| = 1. Namely,
Ci =

©
t1e

i + t2 eai : t1, t2 ≥ 0
ª
, i = 1, 2,

where

e1 =
p
1− ρ2

⎛⎝ 0

1

⎞⎠ and e2 =
p
1− ρ2

⎛⎝ 1

0

⎞⎠ .

When Fi is not reflective the associated cone of boundary influence Ci is defined to be empty and

the face Fi has no boundary influence on solutions to the VP for any v ∈ R2+.

Avram et al. (2001) prove that the cone Ci identifies precisely the region in which the face Fi

has boundary influence. Notice that any two cones C1 and C2 partition the state space R2+ into

three regions: (R2+ ∩C1)\C2, (R2+ ∩C2)\C1, and one of the following two regions R2+ ∩C1 ∩C2 or

R2+\(C1 ∪ C2). Note that one of the latter two regions is always empty.

Before we can state the main result of Avram et al. (2001) some additional notation is needed.

For v ∈ R2+, let ea0(v) = || θ ||
|| v || v.

The following expressions determine the locally optimal value of the VP for various cases. For

v ∈ R2+, let

I0(v) = < ea0(v)− θ, v >,

Ii(v) = < eai(v)− θ, v >, i = 1, 2.
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Next, specializing Theorem 3.1 of Avram et al. (2001) to our setting we have the following theorem.

Theorem 4 (Avram et al.) Consider the VP (35) with data (θ, Γ, R). Also assume θ1 < 0 and

θ2 + κθ1 < 0. Then

(a) If v /∈ C1 ∪ C2, then I(v) = I0(v);

(b) If v ∈ C1\C2, then I(v) = I1(v);

(c) If v ∈ C2\C1, then I(v) = I2(v);

(d) If v ∈ C1 ∩ C2, then I(v) = min
©
I1(v), I2(v)

ª
.

Avram et al. (2001) also characterizes the optimal path associated with the VP in each of these

cases either as a direct linear path from the origin to v, or as a piecewise linear path with only one

break point, see Avram et al. (2001) for further discussion.

A.3 The large deviations rate function I(ν) for our Brownian model

In this section, we prove Proposition 2. Recall that we want to calculate the steady-state probability

P(Q2 > u). Clearly,

P(Q2 > u) = P
µ
Q2
u

> 1

¶
.

Therefore, letting A =
©
v ∈ R2+ : v1 ≥ 0, v2 ≥ 1

ª
, it follows from (33) that19

P(Q2 > u) = exp

½
−
µ
inf
v∈A

I(v)

¶
u

¾
for u large.

In other words, the rate rq in (20) is exactly infv∈A I(v) where A =
©
v ∈ R2+ : v1 ≥ 0, v2 ≥ 1

ª
,

which we now calculate. The scaling Lemma 5.3 of Avram et al. (2001) implies that

inf
v∈A

I(v) = inf
v∈A

I(v),

where eA = ©v ∈ R2+ : v1 ≥ 0, v2 = 1
ª
. Theorem 3.1 and Lemma 6.1 of Avram et al. (2001) then

yield

inf
v∈A

I(v) = min

½
inf
v∈A

I0(v), inf
v∈A∩C1

I1(v), inf
v∈A∩C2

I2(v)

¾
, (36)

where inf∅ Ii(v) = ∞ for i = 1, 2 by convention. Therefore, next we compute each of the terms

on the right hand side of (36). By straightforward calculations outlined in Avram et al. (2001) it

19Readers should keep in mind that the statement is an approximation, which becomes precise as u gets large; see

Avram et al. (2001) for a precise statement.
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follows that

I0(v) =
1

1− ρ2

½q
θ21 − 2ρθ1θ2 + θ22

p
(x− ρ)2 + 1− ρ2 + x(ρθ2 − θ1) + ρθ1 − θ2

¾
,

I1(v) =
2

(κ2 + 2ρκ+ 1)
{x [−θ1 + θ2 (κ+ 2ρ)]− (θ1κ+ θ2)} ,

I2(v) = 2 {−θ1x+ 2ρθ1 − θ2} ,

where v = (1, x)0. Recall that we focus on the case ρ ≤ 0, in which case it is straightforward to

show that

inf
v∈A

I0(v) = I0
µ³

0 1
´0¶

=
1

1− ρ2

∙q
θ21 − 2ρθ1θ2 + θ22 + ρθ1 − θ2

¸
=
√
nr1.

To calculate the other terms in (36) we need to characterize the cones C1 and C2. Recall that the

face F1 has influence only if it is reflective, that is, ea11 > 0, in which case it follows that
inf

v∈A∩C1
I1(v) = I1

µ³
0 1

´0¶
=
−2(θ1κ+ θ2)

κ2 + 2ρκ+ 1
=
√
nr4.

Calculating infv∈A∩C2 I
2(v) is more involved and requires considering different cases. Clearly, face

F2 has influence if and only if ea22 > 0, in which case we need to consider the following two cases,

which are illustrated in Figure 6.

1. ea21 = θ1(4ρ
2 − 1)− 2ρθ2 ≤ 0. In this case R2+ ⊂ C2 and it follows that

inf
v∈A∩C2

I2(v) = I2
µ³

0 1
´0¶

= 2(2θ1ρ− θ2) =
√
nr2.

2. ea21 = θ1(4ρ
2 − 1) − 2ρθ2 > 0. In this case C2 ⊂⊂ R2+ and it follows that infv∈A∩C2 I

2(v) =

I2
µ³

x0 1
´0¶

, where x0 = 2ρ− θ1/(2θ1ρ− θ2). Therefore, it follows that

inf
v∈A∩C2

I2(v) = 2

∙
θ21

2θ1ρ− θ2
− θ2

¸
=
√
nr3.

Finally, combining these derivations with (36) and Theorem 4 one can derive infv∈A I(v) ex-

plicitly as follows, depending on six cases.

Case I: ea11 ≤ 0 so F1 is not reflective. Then there are two subcases to consider:
Case I.a: ea22 ≤ 0 so F2 is not reflective. Then neither boundary has an effect on the rate, and

it follows that infv∈A I(v) = I0
µ³

0 1
´0¶

=
√
nr1.

Case I.b: ea22 > 0 so F2 is reflective. Then we need to consider the following two further

subcases:
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Case 1 Case 2

Figure 6 Depending on the sign of ea21 the cone of boundary influence C2 may or may not subsume R2+. Case
1 illustrates R2+ ⊂ C2 and Case 2 illustrates C2 ⊂ R2+.

Case I.b.i: ea21 ≤ 0. Then, R2+ ⊂ C2 and it follows that infv∈A I(v) = I2
µ³

0 1
´0¶

=
√
nr2.

Case I.b.ii: ea21 > 0. Then, C2 ⊂⊂ R2+ and it follows that
inf
v∈A

I(v) = min

½
I0
µ³

0 1
´0¶

, I2
µ³

x0 1
´0¶¾

,

where x0 = 2ρ− θ1/(2θ1ρ− θ2). Therefore, it follows that infv∈A I(v) =
√
nmin {r1, r3} .

CaseII: ea11 > 0 so F1 is reflective. Then we must consider the following two subcases:
Case II.a: ea22 ≤ 0 so F2 is not reflective. Then infv∈A I(v) = I1

µ³
0 1

´0¶
=
√
nr4.

Case II.b: ea22 > 0 so F2 is reflective. Then we need to consider the following two further

subcases:

Case II.b.i: ea21 = θ1(4ρ
2 − 1)− 2ρθ2 ≤ 0. In this case R2+ ⊂ C2 and it follows that

inf
v∈A

I(v) = min

½
I1
µ³

0 1
´0¶

, I2
µ³

0 1
´0¶¾

=
√
nmin {r4, r2} .

Case II.b.ii: ea21 = θ1(4ρ
2 − 1)− 2ρθ2 > 0. In this case, C2 ⊂⊂ R2+ and it follows that

inf
v∈A

I(v) = min

½
I1
µ³

0 1
´0¶

, I2
µ³

x0 1
´0¶¾

where x0 = 2ρ− θ1/(2θ1ρ− θ2). Therefore, it follows that infv∈A I(v) =
√
nmin {r4, r3} .

Assuming ρ ≤ 0 and z > 0 (that is, θ < 0) it follows that ea22 > 0, and F2 is always reflective,

eliminating cases I.a and II.a above. Proposition 2 simply summarizes the remaining four cases

of interest and it also expresses the conditions for each case in terms of primitives of the model

described in Section 3.
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B On-Line Appendix: Comparative Statics and the Discussion of

Table 1

The impact of correlation on the integration value is already discussed in Section 5. Next, we

discuss the comparative statics of the other parameters in Table 1.

1. Guaranteed speed of service d affects integration value through the ratio d2/d1. An increase in

d2/d1 increases value, the intuition behind which is as follows. As d1 goes down the firm needs

more flexible standardized excess capacity which increases the value of resource substitution.

In contrast, as d2 goes down the standardized excess capacity of resource 2 increases to provide

the same reliability ε2 in the dedicated network, whereas the excess capacity of the flexible

resource remains the same. Therefore, the value of dynamic substitution decreases.

2. Reliability ε: Higher express service reliability (smaller ε1) increases the value of integration.

Indeed, such reliability increase again requires the firm to build more flexible standardized

excess capacity thereby increasing the option value of resource substitution. However, the

effect of ε2 is more involved and will be discussed in the next section.

3. Variance σ2 affects the integration value through the ratio σ1/σ2. An increase in σ1/σ2

increases value, and the intuition behind that is as follows. Keeping everything else constant,

an increase in express class variability requires more (standardized) excess capacity of the

flexible resource to provide the same quality of service, cf. (24), which increases the option

value. In contrast, as the regular class becomes more variable the flexible resource capacity

remains the same and the option value of dynamic substitution goes down because it becomes

harder for the flexible resource to absorb larger fluctuations in regular demand. Moreover,

the slow server capacity increases as σ2 increases, decreasing the value of integration.

4. Volume λ: First consider the simplest comparative statics for volume by keeping variance

constant (and thus ignoring the natural relationship (22) between volume and variance). In

that case, an increase in volume of the express class λ1 results in smaller (standardized) excess

capacity of the flexible resource, cf. (24). Thus the option value decreases. In contrast, an

increase in volume of the regular class λ2 has a linear impact if the violation probability

remains the same, which follows simply from the definition of value of integration V , cf.

(28). Moreover, as the volume of the regular class increases we see a “statistical economies of
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scale” effect: the standardized excess capacity z2 of resource 2 decreases in λ2 (which provides

reliability of ε2 in the dedicated network) while the standardized excess capacity z1 of the

flexible server remains the same so that the substitution frequency increases. Therefore, the

relative impact of integration increases as λ2 increases. More specifically, the probability of

service failure decreases. Thus, the value of integration V increases superlinearly in λ2.

Although one gains some insight by considering isolated changes in volume or variance of each

class, it is rare to have an isolated change in volume. Typically, when volume changes, the variance

may change as captured by the arrival pooling parameter γ specified in (22). A more realistic

comparative static on volume thus is to let λ change while keeping γ constant. Such combined

volume-variance change in essence combines the effects of isolated changes in σ and λ. As the

regular class volume-variance increases (keeping γ constant), the standardized excess capacity of

resource 2 decreases, cf. (25), while the standardized excess capacity of the flexible resource remains

the same. Therefore, the relative impact of integration value increases. This can also be interpreted

as showing that the gains from statistical economies of scale dominate the reduction in the option

value of flexible server’s excess capacity, which is due to the increase in variability of regular demand.

However, the effect of a change in the express class volume-variance is more involved and will be

discussed next.

Discussion of Subtle Comparative Statics. The two remaining comparative statics that

impact the two types of firms differently are the effects of combined volume-variance of the express

class and the reliability increase for the regular class. To understand these effects and their different

consequences on the two types of firms, we found it helpful to break down how value is impacted by

the three main drivers: arrival pooling, resource substitution, and the correlation effect as discussed

in Section 5.

First consider an increase of the combined volume-variance of the express class; that is, λ1

increases for a fixed γ1. For an express firm there is no strong substitution effect, while the dominant

driver of value is negative correlation. As λ1 changes, the standardized excess capacity z1 of the

express class changes to provide the same reliability in the dedicated network. The change in z1, of

course, impacts how the express class queue behaves, which in turn affects the regular class queue

through the correlation effect. Therefore, what matters in this case is the standardized relative

excess capacity z1 of the express class, which decreases as λ1 increases, cf. (24). Therefore, the

value of integration decreases for the express firm as λ1 increases. In contrast, there is a strong
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substitution effect for the regular firm. That is, the standardized excess capacity z1 of the flexible

server gets substituted for resource 2, and one unit of standardized excess capacity of the flexible

server corresponds to σ1/σ2 units of standardized capacity of resource 2. Therefore, the standardized

excess capacity of the flexible server measured in units of standardized capacity of resource 2, that

is, the quantity z1σ1/σ2, is the driver of value in this case. Moreover, z1 σ1/σ2 increases in λ1

(keeping γ1 constant), resulting in higher value for the regular firm.

Next, consider the reliability increase of the regular class service. As the reliability of regular

class service increases, that is, as ε2 decreases, the standardized excess capacity z2 of resource 2

increases, while that for the flexible resource remains the same. Naturally, one would expect the

value of integration to go down, which is indeed the case for the express firm. Now consider a

regular firm. Its strong substitution effect leads to partial resource pooling (meaning that both

resource types almost behave as one resource pool) as discussed earlier that results in efficiencies in

addition to those stemming from arrival pooling. With negative correlation, this partial resource

pooling decreases the variability faced by resource 2. This indeed is reflected by the term ε
σ22/σ

2
T

2

in (5), where σ22/σ
2
T > 1 for the regular firm. Thus, as ε2 decreases, the service failure probability

decreases at a faster rate, resulting in an increase in the value of integration for the regular firm.

(Observe from Corollary 2 that the positive impact of ε2 on a regular firm’s value really is a second

order effect.)

Readers may wonder why a change in the speed of service d2 for regular service does not produce

a similar effect as a change in ε2? The reason is that the impact of variance reduction due to partial

resource pooling is unaffected by the speed of service and depends only on demand characteristics

and the reliability of regular class service, both of which are constant when considering a change

in d2.

Our analysis also admits a similar study of comparative statics of the relative value of in-

tegration. For example, it is easy to see from Corollaries 1 and 2 that relative value increases

superlinearly in regular class volume for an express firm while it increases sublinearly for a regular

firm.

C On-Line Appendix: Proofs in Sections 4-7

Proof of Proposition 1: Given that the express class receives static priority service at server 1,

its dynamics are unaffected by the regular class. Thus, Q1 can be analyzed in isolation as a simple
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one-dimensional standard reflected Brownian motion with stationary distribution

P(Q1 > x) = exp {2θ1x} , (37)

cf. page 94 of Harrison (1985). Applying (18) gives our express violation probability:

P(D1 > d1) = exp

½
2θ1

λ1d1√
nσ1

¾
= exp

½
2
√
n
(λ1 − μ1)

σ1

λ1d1√
nσ1

¾
= exp

½
2(λ1 − μ1)λ1

σ21
d1

¾
. ¥

Proof of Proposition 4. We must determine the relevant case in Proposition 2. Given that

λ1 À λ2, it follows from (22), (24), and (25) that
³
1− (σ1/σ2)2

´
z1
z2

< 0 < 2 (σ1/σ2) + 2ρ and

z1
z2
(4ρ2−1) ≈ 0 > 2 ρ. Therefore, we are in case 1 of Proposition 2, that is, r = r2. Thus, Proposition

2 yields that

P(D2 > d2) = exp

½
−r2

λ2
σ2

d2

¾
= exp

½
2λ2 (λ2 − με2)

σ22
d2

¾
× exp

½
−4ρ(λ1 − με1)

σ1

λ2
σ2

d2

¾
. (38)

On the other hand, by (23)-(24) it follows that

εi = exp

½
2(λi − μεi )λi

σ2i
di

¾
, i = 1, 2. (39)

Combining this with (38) gives the result. ¥

Proof of Corollary 1. It follows from Proposition 4 that

P(D2 > d2) = ε2 exp

½
−2ρλ2

λ1

σ1
σ2

d2
d1
log(ε1)

¾
= ε2 exp

(
−2ρd2

d1
log(ε1)

λ
1− γ2
2

λ
1−γ1
1

)
.

Taylor’s expansion of this combined with (28) gives (30). ¥

Proof of Proposition 5. We must determine the relevant case in Proposition 2. Given that

λ2 À λ1, it follows from (22), (24), and (25) that
³
1− (σ1/σ2)2

´
z1
z2

> 0 > 2 (σ1/σ2) + 2ρ. (Thus,

if ρ < 0, we have that σ1 + 2ρσ2 < 0 so that σ2T < σ22.) Therefore, we are either in case 3 or case 4

of Proposition 2 depending on the value of ρ. Thus, consider two cases:

Case (i): ρ 6 −1/2. Then z1
z2
(4ρ2 − 1) ≥ 0 > 2 ρ and we are in case 3 of Proposition 2. That

is, r = min (r2, r4). We show that r2 > r4:

r2 = 2 z2 − 4ρ z1 =
σ2
λ2

log
³
1
ε2

´
d2

− 2ρσ1
λ1

log
³
1
ε1

´
d1

.

43



For λ2/λ1 large, substituting σi = λ
γi
i for i = 1, 2 gives

r2 =
log
³
1
ε2

´
d2

1

λ
1−γ2
2

− 2ρ
log
³
1
ε1

´
d1

1

λ
1−γ1
1

≈ −2ρ 1

d1λ
1−γ1
1

log

µ
1

ε1

¶
.

Similarly,

r4 =
2(μ1 − λ1 + μ2 − λ2)

σ21 + 2ρσ1σ2 + σ22
σ2 =

−σ21
λ1

log(ε1)
d1
− σ22

λ2

log(ε2)
d2

σ21 + 2ρσ1σ2 + σ22
σ2

=
− log(ε1)d1

λ
2γ1−1
1 − log(ε2)

d2
λ
2γ2−1
2

λ
2γ1
1 + 2ρλ

γ1
1 λ

γ2
2 + λ

2γ2
2

λ
γ2
2 ≈ −

log (ε2)

d2

1

λ
1−γ2
2

.

Given that λ2/λ1 is large, r4 ¿ r2, so that r = r4.

Case (ii): ρ > −1/2. Then z1
z2
(4ρ2 − 1) < 2 ρ < 0 and we are in case 4 of Proposition 2. That

is, r = min (r3, r4). We show that r3 > r4:

r3 =
2z21

z2 − 2ρz1
+ 2z2 =

2
³

σ1
2d1λ1

log
³
1
ε1

´´2
σ2

2d2λ2
log
³
1
ε2

´
− ρ σ1

d1λ1
log
³
1
ε1

´ + σ2
d2λ2

log

µ
1

ε2

¶
.

For λ2/λ1 large, substituting σi = λ
γi
i for i = 1, 2 gives

r3 =

³
1
2d1
log
³
1
ε1

´´2
1

λ
2−2γ1
1

log(ε2)
d2

1

λ
1−γ2
2

− 2ρ
log 1

ε1
d1

1

λ
1−γ1
1

− 1

d2λ
1−γ2
2

log

µ
1

ε2

¶
≈ −

log
³
1
ε1

´
2ρd1

1

λ
1−γ1
1

,

while r4 remains as in case (i). Given that λ2/λ1 is large, r4 ¿ r3, so that again r = r4.

Thus, in either case, we have that

P(D2 > d2) = exp

½
−r4

λ2
σ2

d2

¾
(40)

= exp

½
2 [(λ1 − μ1) + (λ2 − μ2)]

σ21 + 2ρ σ1 σ2 + σ22
λ2 d2

¾
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Combining this with Proposition 3 gives the result. ¥

Proof of Corollary 2. It follows from Proposition 5 that P(D2 > d2) = ε2 e
δ, where

δ =

µ
σ22
σ2T
− 1
¶
log(ε2) +

σ21
σ2T

λ2
λ1

d2
d1
log(ε1).

Taylor’s expansion yields
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Because λ2 À λ1 and σi = λ
γi
i for i = 1, 2, it follows that δ 6 0 and |δ| ¿ 1. To approximate δ first
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Using this it follows that
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Combining this with (43) we have that
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which combined with (42) and (28) gives the Taylor expansion for a regular firm’s integration value.

¥

Proof of Theorem 1. For notational simplicity assume λe2 = λr1 = 1 and λe1 = λr2 = N À 1.

Then it follows from Corollary 1 that

V e ≈ 2ρ p2ε2 log(ε1)
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Similarly, it follows from Corollary 2 that
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Similarly, it follows from Corollary 2 that
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Since 2γ2 − 1 < 2− γ1 for all γ1, γ2 ∈ [1/2, 1) we have that 1
N2γ2−1 À 1

N2−γ1 , which clearly implies

V r

Cr
D
À V e

Ce
D
. ¥

Proof of Proposition 6. It is clear that (in the integrated network) as one reduces the

slow server capacity (or, equivalently the standardized excess capacity z2) regular service failure

probability increases. We want to reduce z2 to the critical value, say z∗2, which corresponds to the

service failure probability ε2. One can use Proposition 2 to calculate service failure probabilities for

different values of z2. Clearly, as in proof of Proposition 4, case 1 of Proposition 2 applies before

any capacity reduction. Assuming we are in case 1 of Proposition 2 throughout the interval (z∗2 , z
d
2)

as we reduce z2 from zd2 to z
∗
2 , where z

d
2 = (μ

d
2 − λ2)/σ2, we have that

P(D2 > d2) = exp

½
−r2

λ2
σ2

d2

¾
= ε2,
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where r2 is evaluated at z2 = z∗2 . Substituting r2 = 2z2 − 4z1ρ and combining that with (7) and

(22), and solving for the slow-server capacity μ2 gives the result.

To conclude the proof, we must justify the assumption that for all z2 ∈ (z∗2 , zd2) case 1 of

Proposition 2 applies, which can be proved along the lines of the proof of Proposition 4, since

λ1 À λ2 and
z∗2
z2
= 1 + ρ

2d2 log(ε1)

d1 log(ε2)

λ
1−γ

2
2

λ
1−γ

1
1

≈ 1. ¥

Proof of Proposition 7. As in the proof of Proposition 6, it is clear that (in the integrated

network) as one reduces the slow-server capacity (or, equivalently, the standardized excess capacity

z2) regular service failure probability increases. We want to reduce z2 to the critical value of

z∗2, which corresponds to the service failure probability ε2. One can use Proposition 2 to calculate

service failure probabilities for different values of z2. As in Proposition 5, r = r4 before any capacity

reduction (we are in either case 3 or case 4 of Proposition 2 depending on the value of ρ). Assuming

that r = r4 throughout the interval (z∗2 , z
d
2) as we reduce z2 from zd2 to z

∗
2 , where z

d
2 = (μ

d
2−λ2)/σ2,

we have that

P(D2 > d2) = exp

½
−r4
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σ2
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¾
= ε2,

where r4 is evaluated at z2 = z∗2. Substituting r4 =
2(σ1z1+σ2z2)
σ21+2ρσ1σ2+σ

2
2
σ2 and combining that with (7)

and (22), and solving for the slow-server capacity μ2 gives the result.

To conclude the proof, we must justify the assumption that for all z2 ∈ (z∗2, zd2) we have that

r = r4, which can be proved along the lines of the proof of Proposition 5, since λ2 À λ1 and
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Proof of Theorem 2. For notational simplicity assume λe2 = λr1 = 1 and λe1 = λr2 = N À 1.

Then it follows Proposition 6 that V e = c2∆μ2 =
c2ρ log(ε1)
d1N1−γ1 . Similarly, it follows from Proposition

7 that
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Therefore, V r À V e. On the other hand,
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D On-Line Appendix: A Simulation Study

In this appendix, we provide a simulation study and a sensitivity analysis as a sanity check of our

analytic approximation. We shall see that the simulation study agrees with the recommendation

stemming from our analytical study of the integration value. In what follows, we first establish

a realistic base case for our simulation studies, specifying the demand data to be used. We then

report the simulation results followed by a detailed sensitivity analysis.

First, we describe the demand data we used for the express firm (e.g. FedEx). We assume

that the total arrival rate20 is 12, 000 requests per hour corresponding to 200 requests per minute,

which is indeed the right order of magnitude for a FedEx hub as mentioned in Section 4. Then

assuming that 80% of the requests are express, we use the demand data for the express firm shown

in Table 3. (We first report results assuming demand is bivariate normally distributed; at the end

of this section we discuss this and also report results for the bivariate lognormal distribution). For

the regular firm (e.g. UPS) we use the symmetric demand data which is shown in Table 4. We

assume a correlation of ρ = −0.4. (In what follows, we will present the results for a spectrum

of negative correlation values.) Moreover, as discussed in Section 4 given that FedEx and UPS

quote delays in the order of days (after subtracting the deterministic travel times from the quoted

delays), it is natural to measure the delays experienced in a hub in hours. Thus, the relevant

performance criterion is whether queueing delays at a hub exceed several hours. For simplicity, we

set d1 = d2 = 1 hour = 60 minutes in our simulation study for both types of firms. Finally, we need

to set capacities for each firm to establish our base case. Taking ε1 = 0.992% and ε2 = 2.683%,

the corresponding service rates of the two servers (in the dedicated case, cf. Proposition 3) are

(μ1, μ2) = (162.60, 41.1) for the express firm, resulting in the utilization of 98.401% for the flexible

server and 97.324% for the regular server. Similarly, we have (μ1, μ2) = (41.40, 162.04) for the

regular firm corresponding to ε1 = 0.005% and ε2 = 18.57%, resulting in the utilization of 96.614%

for the flexible server and 98.741% for the regular server. Although we were not able to obtain

exact utilization numbers, Wright (2006) of UPS confirmed that the percentage utilization of their

trucks and the airplanes are both "in the high nineties with the utilization of trucks being higher

than that of the airplanes", which is consistent with our utilization numbers.

In this base case, we consider the question of whether a regular firm derives more value from in-

20Unfortunately, no data on covariances is publicly available; nor were we able to get such data through our industry

contacts.
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Class 1 Class 2

Arrival rate per minute 160 40

Standard deviation 104.03 38.2

Table 3 Hub-level demand characteristics for the express firm used for the simulation study.

Class 1 Class 2

Arrival rate per minute 40 160

Standard deviation 26 152.8

Table 4 Hub-level demand characteristics for the regular firm used for the simulation study.

tegration, and test the predictive power of our analytic approximations. To this end, we report both

the integration value calculated by our analytic formulas as well as that estimated by simulation.

As a preliminary, we first report the service violation probability for each class for the dedicated

network. We present both our analytic approximations and the estimates by simulation, which are

summarized in Tables 5 and 6. Consider the express firm. The analytic approximations give the

regular service violation probability for the integrated network as PI(D2 > d2) =2.683%, while the

simulation estimate is 2.417% ± 0.003%, which are indeed close. Next, consider the regular firm.

The analytic approximations give the regular service violation probability for the integrated system

as PI(D2 > d2) =18.56%, while the simulation estimate is 18.633%± 0.168%, which are also close

to each other.

Having reported various probability estimates, we can now compare the value of integration for

the two firms. We take p2 = 1 for simplicity; and the value of p1 is irrelevant for this comparison.

First, consider the express firm. The analytic approximations give 0.986 as the integration value,

while the simulation estimate of that is 0.927 ± 0.002; and the two differ by 5.971 ± 0.337%. As

for the regular firm, the analytic approximations gives 4.176 as the value of integration, while the

simulation estimate is 4.199± 0.007, and the two differ by 0.535± 0.286%. For an alternative and

arguably more insightful way to look at the same data, consider the value of integration suggested

P(D1 > d1) P(D2 > d2)

Analytic approximation 0.992% 2.683%

Simulation estimate 0.746%± .004% 2.417%± .003%

Table 5 Service violation probabilities in the dedicated network for the express firm.
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P(D1 > d1) P(D2 > d2)

Analytic approximation 0.0048% 18.56%

Simulation estimate 0.0075%± .0009% 18.633%± 0.168%

Table 6 Service violation probabilities in the dedicated network for the regular firm.

by the analytic approximations. The integration value is 0.986 for the express firm and 4.176 for

the regular firm, suggesting that the value of integration is higher for the regular firm. On the

other hand, the simulation estimate of the integration value is 0.927 ± 0.002 for the express firm,

and that for the regular firm is 4.199± 0.007, also suggesting that the value of integration is higher

for the regular firm in-line with the insight derived from our analytic approximations.

To validate our approximations further, we next consider various values of correlation. For each

firm we first report the value of integration which is estimated both by our analytic approximations

as well as by simulation; see Tables 7 and 8. Table 7 presents the results for an express firm, while

Table 8 presents them for a regular firm.

Comparing Tables 7 and 8 we reach the following conclusions. First, for every correlation value

both the simulation results and the analytic approximations suggest that integration value is higher

(by an order of magnitude) for the regular firm. That is, the simulation study validates our main

result derived from the analytic approximations. Moreover, for the regular firm the integration

value calculated by analytic approximations is very accurate for all correlation values. For the

express firm, the accuracy is good yet decreases as the correlation approaches zero. This may be

explained by our analytic results which show that the value of integration is a small second order

effect for FedEx except if correlation is very negative. Therefore, for other correlation values it is

harder to pick up the very small effects. This problem does not exist for a regular firm (for which

the value is first-order). In other words, the poorer accuracy results from estimating a second order

effect. Nonetheless, the two estimates are sufficiently close that the predictions of simulation agrees

with those of our analytical results.

We next report the regular service violation probability in the integrated network, and the

tightness factor F (or the % improvement in the regular service violation probability through

integration), cf. (28). Tables 9 and 10 present the regular service violation probability in an

integrated network for express and regular firms, respectively. Tables 11 and 12 present the tightness

factors for the express and regular firms. We see from Tables 9 and 10 that for the regular firm,

even the probability estimates of our analytic approximations are fairly close to the estimates by
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Correlation ρ V (approximation) V (simulation) kV (app)-V (sim)k/V (sim)

−.05 .558 .801± .001 30.337%± 0.174%

−.10 .639 .821± .001 22.168%± 0.190%

−.15 .716 .839± .001 14.660%± 0.203%

−.20 .788 .858± .002 8.159%± 0.428%

−.25 .853 .878± .001 2.847%± 0.221%

−.30 .910 .897± .002 1.449%± 0.227%

−.35 .954 .913± .002 4.491%± 0.229%

−.40 .986 .927± .002 6.365%± 0.230%

−.45 1.010 .944± .002 6.992%± 0.227%

−.50 1.027 .957± .002 7.315%± 0.225%

−.55 1.039 .968± .002 7.335%± 0.222%

−.60 1.048 .976± .002 7.377%± 0.220%

−.65 1.055 .984± .003 7.215%± 0.328%

−.70 1.060 .992± .003 6.855%± 0.324%

−.75 1.063 .998± .003 6.513%± 0.321%

−.80 1.066 1.009± .003 5.649%± 0.315%

Table 7 The estimates of value of integration (by analytic approximations and by simulation) for the express

firm as a function of correlation.
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Correlation ρ V (approximation) V (simulation) kV (app)-V (sim)k/V (sim)

−0.050 20.005 19.804± 0.164 1.015%± 0.844%

−0.100 20.459 20.228± 0.228 1.142%± 1.153%

−0.150 20.907 20.566± 0.172 1.658%± 0.857%

−0.200 21.347 20.912± 0.159 2.080%± 0.782%

−0.250 21.781 21.228± 0.208 2.605%± 1.015%

−0.300 22.206 21.662± 0.262 2.511%± 1.255%

−0.350 22.623 21.887± 0.201 3.363%± 0.958%

−0.400 23.032 22.217± 0.222 3.668%± 1.046%

−0.450 23.432 22.691± 0.308 3.266%± 1.421%

−0.500 23.822 22.998± 0.282 3.583%± 1.286%

−0.550 24.202 23.300± 0.216 3.871%± 0.972%

−0.600 24.572 23.593± 0.274 4.150%± 1.224%

−0.650 24.930 23.843± 0.197 4.559%± 0.871%

−0.700 25.278 24.246± 0.180 4.256%± 0.780%

−0.750 25.614 24.456± 0.158 4.735%± 0.681%

−0.800 25.938 24.689± 0.166 5.059%± 0.711%

Table 8 The estimates of value of integration (by analytic approximations and by simulation) for the regular

firm as a function of correlation.
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simulation. In contrast, for the express firm, it seems that the probability estimates from analytical

approximations are off by a factor of approximately 2 to 3.While this may seem discouraging at first,

it leads to the following insight: As long as the two estimates (the one by analytic approximations

and the one by simulation) correspond to reductions of the same order of magnitude in the regular

service violation probability, they will result in similar predictions of integration value. To see this,

consider Table 11, which shows the tightness factor as a function of correlation for an express firm.

As can be seen from Table 11, our analytic approximations give rise to tightness factors which are

close to the simulation results; Table 12 displays similar (indeed, stronger) results for the regular

firm. Given that the tightness factor is the determinant of integration value (cf. (28)), this is indeed

very encouraging. Thus, we conclude that our analytic approximations can predict the value of

integration fairly accurately even when the probability estimates for the express firm may be off

by a factor of 2 to 3. Since our primary focus is the value of integration, we believe that the use of

the approximate formulas we derived based on large deviations approximations is appropriate.

Finally, we test the validity of our analytic approximations as the server capacities (hence the

server utilizations and the promised reliabilities ε) change. The insights gained so far carry over

to this case as well. Tables 13, 14, 15, and 16 summarize the impact of these changes on various

probability estimates, while Tables 17, 18, 19, and 20 report the impact of the changes on the

estimates of integration value V and the tightness factor F.

Lognormal: All the simulation results above sampled bivariate normal random variables and

used an ad-hoc method to correct for negative demand samples.21 To eliminate any errors from that

procedure, we re-ran the entire simulation using the bivariate lognormal distribution. We report

the corresponding results in Tables 21 to 26 below (and continuing at the end of the appendix).

While the results are slighly better (worse) for the regular (fedex) firm, the key insights remain:

the value of integration is much larger for a regular firm and our analytic results provide fairly good

approximations.

21Any negative demand sample in a period was truncated to zero and kept in a “petty cash” account to adjust

future demand. For example, say sample demand is -5 in period i and 100 in period i + 1 and petty cash was 0 in

period i. Then the simulated demand was 0 and petty cash -5 in period i, and 100-5=95 and petty cash = 0 in period

i+ 1. The petty cash ensures that the first moment remains unchanged by truncation.
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Correlation ρ PI(D2 > d2) (approximation) PI(D2 > d2) (simulation) kPI(app)-PI(sim)k/PI(sim)

−.05 1.287% .348%± .002% 269.828%± 2.138%

−.10 1.086% .298%± .001% 264.430%± 1.227%

−.15 .893% .254%± .001% 251.575%± 1.390%

−.20 .713% .213%± .000% 234.742%± 0.000%

−.25 .550% .178%± .000% 208.989%± 0.000%

−.30 .408% .146%± .000% 179.452%± 0.000%

−.35 .298% .120%± .000% 148.333%± 0.000%

−.40 .218% .099%± .000% 120.202%± 0.000%

−.45 .159% .079%± .000% 101.266%± 0.000%

−.50 .116% .062%± .000% 87.097%± 0.000%

−.55 .085% .046%± .000% 84.783%± 0.000%

−.60 .062% .034%± .000% 82.353%± 0.000%

−.65 .045% .026%± .000% 73.077%± 0.000%

−.70 .033% .019%± .000% 73.684%± 0.000%

−.75 .024% .015%± .000% 60.000%± 0.000%

−.80 .018% .012%± .000% 50.000%± 0.000%

Table 9 The estimates of regular service violation probability (by analytic approximations and by simulation)

in an integrated network for the express firm as a function of correlation.
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Correlation ρ PI(D2 > d2) (approximation) PI(D2 > d2) (simulation) kPI(app)-PI(sim)k/PI(sim)

−0.050 6.064% 5.577%± 0.070% 8.732%± 1.382%

−0.100 5.781% 5.322%± 0.058% 8.625%± 1.197%

−0.150 5.501% 5.109%± 0.057% 7.673%± 1.215%

−0.200 5.225% 4.882%± 0.070% 7.026%± 1.557%

−0.250 4.955% 4.636%± 0.058% 6.881%± 1.354%

−0.300 4.689% 4.408%± 0.071% 6.375%± 1.741%

−0.350 4.428% 4.215%± 0.059% 5.053%± 1.491%

−0.400 4.173% 3.992%± 0.059% 4.534%± 1.568%

−0.450 3.923% 3.770%± 0.074% 4.058%± 2.083%

−0.500 3.679% 3.548%± 0.071% 3.692%± 2.117%

−0.550 3.441% 3.362%± 0.068% 2.350%± 2.113%

−0.600 3.210% 3.169%± 0.062% 1.294%± 2.021%

−0.650 2.986% 2.976%± 0.047% 0.336%± 1.610%

−0.700 2.769% 2.775%± 0.043% 0.216%± 1.138%

−0.750 2.559% 2.607%± 0.038% 1.841%± 2.862%

−0.800 2.356% 2.430%± 0.035% 3.045%± 2.794%

Table 10 The estimates of regular service violation probability (by analytic approximations and by simula-

tion) in an integrated network for the regular firm as a function of correlation.
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Correlation ρ F (approximation) F (simulation) kF (app)-F (sim)k/F (sim)

−.05 .520 .852± .000 38.967%± 0.000%

−.10 .595 .873± .000 31.844%± 0.000%

−.15 .667 .892± .000 25.224%± 0.000%

−.20 .734 .910± .000 19.341%± 0.000%

−.25 .795 .925± .000 14.054%± 0.000%

−.30 .848 .939± .000 9.691%± 0.000%

−.35 .889 .950± .000 6.421%± 0.000%

−.40 .919 .959± .000 4.171%± 0.000%

−.45 .941 .967± .000 2.689%± 0.000%

−.50 .957 .975± .000 1.846%± 0.000%

−.55 .968 .981± .000 1.325%± 0.000%

−.60 .977 .986± .000 0.913%± 0.000%

−.65 .983 .989± .000 0.607%± 0.000%

−.70 .988 .992± .000 0.403%± 0.000%

−.75 .991 .994± .000 0.302%± 0.000%

−.80 .993 .995± .000 0.201%± 0.000%

Table 11 The estimates of the tightness factor F (by analytic approximations and by simulation) in an

integrated network for the express firm as a function of correlation.
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Correlation ρ F (approximation) F (simulation) kF (app)-F (sim)k/F (sim)

−0.050 0.673 0.689± 0.003 2.322%± 0.851%

−0.100 0.689 0.704± 0.004 2.131%± 1.112%

−0.150 0.704 0.716± 0.003 1.676%± 0.824%

−0.200 0.719 0.728± 0.004 1.236%± 1.085%

−0.250 0.733 0.741± 0.004 1.080%± 1.068%

−0.300 0.747 0.754± 0.005 0.928%± 1.314%

−0.350 0.762 0.764± 0.004 0.262%± 0.518%

−0.400 0.775 0.777± 0.004 0.257%± 0.510%

−0.450 0.789 0.790± 0.005 0.127%± 0.383%

−0.500 0.802 0.802± 0.005 0.000%± 0.627%

−0.550 0.815 0.812± 0.004 0.369%± 0.497%

−0.600 0.827 0.823± 0.004 0.486%± 0.491%

−0.650 0.839 0.833± 0.003 0.720%± 0.364%

−0.700 0.851 0.845± 0.003 0.710%± 0.359%

−0.750 0.862 0.854± 0.002 0.937%± 0.237%

−0.800 0.873 0.864± 0.002 1.042%± 0.234%

Table 12 The estimates of the tightness factor F (by analytic approximations and by simulation) in an

integrated network for the regular firm as a function of correlation.

μ1 161.40 161.80 162.60 163.80 165.00

Server 1’s Utilization 99.133% 98.888% 98.401% 97.680% 96.970%

P(D1 > d1) (approximation) 8.343% 4.103% .992% .118% .014%

P(D1 > d1) (simulation) 6.972± .016% 3.317± .008% .746± .004% .085± .000 .007± .000%

PI(D2 > d2) (approximation) .694% .471% .218% .068% .021%

PI(D2 > d2) (simulation) .371± .000% .225± .000% .099± .000% .024± .000% .007± .000%

Table 13 The impact of changing server 1 processing rate μ1 on the delay probability estimates for an express

firm (keeping the server 2 processing rate constant at μ2 = 41.1 ).
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μ2 40.7 40.9 41.1 41.8 42.5

Server 2’s Utilization 98.280% 97.800% 97.324% 95.694% 94.118%

P(D2 > d2) (approximation) 10.000% 5.180% 2.683% .268% .027%

P(D2 > d2) (simulation) 9.890± .006% 4.963± .003% 2.417± .003% .208± .001% .013± .000%

PI(D2 > d2) (approximation) .811% .420% .218% .022% .002%

PI(D2 > d2) (simulation) .328± .001% .181± .000% .099± .000% .009± .000% .001± .000%

Table 14 The impact of changing server 2 processing rate μ2 on the delay probability estimates for an express

firm (keeping the server 1 processing rate constant at μ1 = 162.6).

μ1 40.75 40.95 41.40 42.00 42.50

Server 1’s Utilization 98.160% 97.680% 96.618% 95.238% 94.118%

P(D1 > d1) (approximation) 8.484% 4.394% .993% .139% .027%

P(D1 > d1) (simulation) 7.300± .007% 3.668± .007% .744± .002% .080± .000% .010± .000%

PI(D2 > d2) (approximation) .278% .182% .070% .020% .007%

PI(D2 > d2) (simulation) .329± .001% .195± .001% .074± .001% .017± .000% .003± .000%

Table 15 The impact of changing server 1 processing rate μ1 on the delay probability estimates for a regular

firm (keeping the server 2 processing rate constant at μ2 = 162.04).

μ2 161.30 161.70 162.04 163.00 163.30

Server 2’s Utilization 99.194% 98.949% 98.741% 98.160% 97.979%

P(D2 > d2) (approx.) 9.962% 4.900% 2.680% .488% .287%

P(D2 > d2) (simulation) 10.245± .010% 5.014± .004% 2.698± .003% .461± .002% .271± .002%

PI(D2 > d2) (approx.) .335% .144% .070% .009% .005%

PI(D2 > d2) (simulation) .333± .001% .142± .001% .074± .001% .008± .000% .002± .000%

Table 16 The impact of changing server 2 processing rate μ2 on the delay probability estimates for a regular

firm (keeping the server 1 processing rate constant at μ1 = 41.4).
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μ1 161.40 161.80 162.60 163.80 165

V (approximation) .796 .885 .986 1.046 1.065

V (simulation) .818± .002 .876± .002 .927± .002 .957± .002 .965± .002

% difference 2.825± .383 .922± .367 5.971± .337 8.471± .320 9.360± .315

F (approximation) .741 .824 .919 .975 .992

F (simulation) .846± .000 .906± .000 .959± .000 .990± .000 .998± .000

% difference 14.150± .059 9.990± .042 4.385± .021 1.610± .007 .622± .002

Table 17 The impact of changing server 1 processing rate μ1 on the estimates of integration value V and

the tightness factor F for an express firm (keeping the server 2 processing rate constant at μ2 = 41.1).

μ2 40.70 40.90 41.10 41.80 42.50

V (approximation) 3.676 1.904 .986 .099 .010

V (simulation) 3.825± .004 1.913± .002 .927± .002 .080± .001 .005± .000

% difference 4.053± .180 .470± .147 5.971± .337 19.205± 1.257 50.646± .375

F (approximation) 91.892% 91.892% 91.892% 91.892% 91.892%

F (simulation) 96.679± .004% 96.354± .001% 95.921± .003% 95.715± .017% 95.287± .048%

% difference 5.209± .024% 4.855± .006% 4.385± .021% 4.160± .110% 3.694± .307%

Table 18 The impact of changing server 2 processing rate μ2 on the estimates of integration value V and

the tightness factor F for an express firm (keeping the server 1 processing rate constant at μ1 = 162.6).

μ1 40.75 40.95 41.40 42.00 42.50

V (approximation) 3.844 3.997 4.176 4.257 4.278

V (simulation) 3.790± .007 4.005± .007 4.199± .007 4.290± .007 4.312± .007

% difference 1.406± .319 .200± .298 .535± .286 .771± .288 .809± .292

F (approximation) .896 .932 .974 .993 .997

F (simulation) .878± .000 .928± .000 .973± .000 .994± .000 .999± .000

% difference 2.035± .103 .439± .080 .106± .045 .129± .021 .166± .004

Table 19 The impact of changing server 1 processing rate μ1 on the estimates of integration value V and

the tightness factor F for a regular firm (keeping the server 2 processing rate constant at μ2 = 162.04).
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μ2 161.30 161.70 162.04 163.00 163.30

V (approximation) 15.404 7.609 4.176 .766 .451

V (simulation) 15.858± .025 7.794± .009 4.199± .007 .726± .005 .430± .004

% difference 2.948± .297 2.437± .205 .535± .286 5.230± 1.150 4.606± 1.628

F (approximation) .966 .971 .974 .981 .983

F (simulation) .967± .000 .972± .000 .973± .000 .984± .000 .991± .000

% difference .111± .042 .109± .044 .106± .045 .275± .059 .836± .027

Table 20 The impact of changing server 2 processing rate μ2 on the estimates of integration value V and

the tightness factor F for a regular firm (keeping the server 1 processing rate constant at μ1 = 41.4).

Correlation ρ V (approximation) V (simulation) kV (app)-V (sim)k/V (sim)

−0.050 0.558 0.974± 0.015 42.710%± 1.765%

−0.100 0.639 1.000± 0.015 36.100%± 1.917%

−0.150 0.716 1.024± 0.011 30.078%± 1.502%

−0.200 0.788 1.036± 0.018 23.938%± 2.644%

−0.250 0.853 1.067± 0.016 20.056%± 2.398%

−0.300 0.910 1.084± 0.015 16.052%± 2.324%

−0.350 0.954 1.098± 0.014 13.115%± 2.216%

−0.400 0.986 1.116± 0.014 11.649%± 2.217%

−0.450 1.010 1.124± 0.011 10.142%± 1.759%

−0.500 1.027 1.127± 0.015 8.873%± 2.426%

−0.550 1.039 1.140± 0.017 8.860%± 2.719%

−0.600 1.048 1.147± 0.018 8.631%± 2.868%

Table 21 [Like TABLE 7 but with lognormal demand]The estimates of value of integration (by analytic

approximations and by simulation) for the express firm as a function of correlation.
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E OnlineAppendix: Proofs in Section 8

Proof of Proposition 8. The first order conditions for the capacity optimization problem (32)

gives

λipi
∂

∂μi
Pded(Di > di) + ci = 0. (45)

By Proposition 1, we have that

∂

∂μi
Pded(Di > di) = −2

λi
σ2i

diPded(Di > di).

Substituting this into (45) gives

Pded(Di > di) =
ci
2pidi

σi
λi
,

from which we have that

zdedi =
1

2di

σi
λi
log

Ã
2pidi
ci

µ
λi
σi

¶2!
. ¥

The proofs of Propositions 9 and 10 assume that the cost minimized in the capacity optimization

problem (32) is (strictly) convex, which is easy to check for the dedicated network. Under this

assumption, the first order conditions are necessary and sufficient. However, since there are eight

different cases for calculating the regular service failure probability (as can be seen in Appendix

A.3) depending on problem parameters, in particular, the optimal capacity choices, solving the first

order conditions can be tricky. To be specific, it requires identifying which one of the eight different

regimes is the relevant one under the optimal capacity decisions, which in turn depends on the

particular regime. Thus, solving the first order conditions analytically does not seem tractable in

general. Luckily, the analysis is simpler for the canonical firm (eg. express and regular), although

it still involves guessing the parameter regime.

To build intuition, note that combining the analysis of the dedicated network with the arrival

pooling effect, we see that z1/z2 is small for an express firm while it is large for a regular firm.

Although it is not obvious that this will be the case in the integrated network apriori, we will show

that it is indeed the case. In what follows, we will solve the first order conditions only for the

canonical firms (eg. express and regular firms), and believe that deriving a solution in general is

not analytically tractable. In the case of canonical firm, we initially guess that the solution to the

first order conditions have the following properties: z > 0 and z1/z2 is small for an express firm

while it is large for a regular firm. Then we will show that the solution we derive satisfies these

assumptions.
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Proof of Proposition 9. First observe that zint > 0 and zint1 /zint2 is small since λ1 À λ2 for

an express firm. Since σ1/σ2 is also large for an express firm, it is easy to see that we are in case 1

of Proposition 1 (in a neighborhood of zint). That is,

Pint(D2 > d2) = exp

½
−rλ2

σ2
d2

¾
,

where r = 2zint2 − 4ρzint1 . Then note that the first order conditions in the capacity optimization

problem are as follows:

λ1p1
∂

∂μ1
Pint(D1 > d1) + c1 + λ2p2

∂

∂μ1
Pint(D2 > d2) = 0, (46)

λ2p2
∂

∂μ2
Pint(D2 > d2) = 0. (47)

Recall that Pint(D1 > d1) = exp
n
−2λ1σ1 z1d1

o
. Then it is easy to see that

∂

∂μ1
Pint(D1 > d1) = −

2λ1p1
σ21

Pint(D1 > d1). (48)

Similarly,

∂

∂μ2
Pint(D2 > d2) =

∂

∂r
Pint(D2 > d2)

∂r

∂z2

∂z2
∂μ2

= −2λ2p2
σ22

Pint(D2 > d2), (49)

∂

∂μ1
Pint(D2 > d2) =

∂

∂r
Pint(D2 > d2)

∂r

∂z1

∂z1
∂μ1

=
4ρλ2d2
σ1σ2

Pint(D2 > d2). (50)

We will show that the first order conditions are satisfied, but before checking the first order condi-

tions (46)-(47), note that

Pint(D1 > d1) = exp

½
−2λ1

σ1
zint1 d1

¾
=

1

2p1d1

µ
σ1
λ1

¶2 ∙
c1 + 2ρc2

σ2
σ1

¸
. (51)

Similarly,

Pint(D2 > d2) = exp

½
−rλ2

σ2
d2

¾
=

c2
2p2d2

µ
σ2
λ2

¶2
. (52)

Then combining (46)-(52) it is straightforward to show that the first order conditions (46)-(47) are

satisfied by zint. ¥

Proof of Proposition 10. First, observe that zint > 0 and zint1 /zint2 is large since λ1 ¿ λ2 for

a regular firm. Since σ1/σ2 is also small for a regular firm, it is easy to see from Proposition 1 that

Pint(D2 > d2) = exp

½
−rλ2

σ2
d2

¾
in a neighborhood of zint where

r = r4 = 2
σ1σ2
σ2T

z1 + 2
σ22
σ2T

z2.
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Recall that the first order conditions for the capacity optimization problem are as follows:

λ1p1
∂

∂μ1
Pint(D1 > d1) + c1 + λ2p2

∂

∂μ1
Pint(D2 > d2) = 0,

λ2p2
∂

∂μ2
Pint(D2 > d2) = 0.

Also recall that

Pint(D1 > d1) = exp

½
−2λ1

σ1
z1d1

¾
.

Then it is easy to see that

∂

∂μ1
Pint(D1 > d1) = −

2λ1p1
σ21

Pint(D1 > d1). (53)

Similarly,

∂

∂μ2
Pint(D2 > d2) =

∂

∂r
Pint(D2 > d2)

∂r

∂z2

∂z2
∂μ2

= −2d2λ2
σ2T

Pint(D2 > d2), (54)

∂

∂μ1
Pint(D2 > d2) =

∂

∂r
Pint(D2 > d2)

∂r

∂z1

∂z1
∂μ1

= −2d2λ2
σ2T

Pint(D2 > d2). (55)

We will show that the first order conditions are satisfied, but before doing so note that

Pint(D1 > d1) = exp

½
−2λ1

σ1
zint1 d1

¾
=

c1 − c2
2p1d1

µ
σ1
λ1

¶2
, (56)

Pint(D2 > d2) = exp

½
−rλ2

σ2
d2

¾
= exp

½
−λ2
σ2

d2

∙
2
σ1σ2
σ2T

zint1 + 2
σ22
σ2T

zint2

¸¾
=

c2
2p2d2

µ
σT
λ2

¶2
.(57)

Then combining (53)-(57), it is straightforward to check that the first order conditions are satisfied

by zint. ¥

Proof of Theorem 3. We will attach a superscript e (r) to denote the express (regular)

firm to avoid confusion as needed. For a meaningful comparison of the express and regular firms,

let λe1 + λe2 = λr1 + λr2 be large with λe2 = λr1 =O(1). Let C denote the cost rate for an optimally

designed dedicated network and Ce denote the corresponding cost rate for an integrated express

firm. It follows from Proposition 8 that

C =
2X

i=1

ciλi +
2X

i=1

ci
2di

σ2i
λi

"
1 + log

Ã
2pidi
ci

µ
λi
σi

¶2!#
.

Similarly, it follows from Proposition 9 that

Ce =
2X

i=1

µ
ciλi +

ci
2di

σ2i
λi

¶
+ ρ

c2
d1

σ1
λ1

σ2 +
c1
2d1

σ21
λ1
log

Ã
2p1d1

c1 + 2ρc2
σ2
σ1

µ
λ1
σ1

¶2!

+ρ
c2
d1

σ1
λ1

σ2 log

Ã
2p1d1

c1 + 2ρc2
σ2
σ1

µ
λ1
σ1

¶2!
+

c2
2d2

σ22
λ2
log

Ã
2p2d2
c2

µ
λ2
σ2

¶2!
.
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The value of integration for the express firm V e = C − Ce is then given by

V e =
c1
2d1

σ21
λ1
log

µ
1 + 2ρ

c2
c1

σ2
σ1

¶
− ρ

c2
d1

σ1
λ1

σ2 − ρ
c2
d1

σ1
λ1

σ2 log

Ã
2p1d1

c1 + 2ρc2
σ2
σ1

µ
λ1
σ1

¶2!
.

Recall that log(1 + x) ≈ x − x2/2 for small x. Then since σ2/σ1 is small for an express firm, we

conclude that

V e ≈ c1
2d1

σ21
λ1

"
2ρ

c1
c2

σ2
σ1
− 2ρ2

µ
c2
c1

σ2
σ1

¶2
− ρ

c2
d1

σ1
λ1

σ2 − ρ
c2
d1

σ1
λ1

σ2 log

Ã
2p1d1

c1 + 2ρc2
σ2
σ1

µ
λ1
σ1

¶2!#
.

That is,

V e ≈ −ρ c2
d1

σ1
λ1

σ2 log

Ã
2p1d1

c1 + 2ρc2
σ2
σ1

µ
λ1
σ1

¶2!
− ρ2

c22
d1c1

σ22
λ1

.

Notice that V e =O
¡
log(λe1)/(λ

e
1)
1−γ1

¢
which is small, i.e. o(1), since λe1 is large.

The analysis for the regular firm is similar. Letting Cr denote the cost rate for an integrated

regular firm, it follows from Proposition 10 that

Cr =
c1 − c2
2d1

σ21
λ1
+ c1

Ã
λ1 +

1

2d1

σ21
λ1
log

Ã
2p1d1
c1 − c2

µ
λ1
σ1
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(
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µ
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c2

λ22
σ2T

¶
− σ21
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log

Ã
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c1 − c2

µ
λ1
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¶2!)
.

Then the value of integration V r = C − Cr for the regular firm is given by

V r =
c2
2d1

σ21
λ1
+

c1
2d1

σ21
λ1
log

µ
1− c2

c1

¶
+
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2d2λ2

¡
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¢
+

c2
2d1

σ21
λ21
log

Ã
2p1d1
c1 − c2

µ
λ1
σ1

¶2!

+
λ2c2
2d2

∙
σ22
λ22
log

µ
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¶
− σ2T

λ22
log

µ
2p2d2
c2
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σ2T

¶¸
.

We assume c2/c1 ¿ 1, which is a reasonable assumption in most settings including the FedEx-UPS

example. Then

log

µ
1− c2

c1

¶
≈ −c2

c1
− 1
2

µ
c2
c1

¶2
.

Thus,

V r ≈ c2
2d1

σ21
λ1

"
log

Ã
2p1d1
c1 − c2

µ
λ1
σ1

¶2!
− 1
2
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#
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.

Letting g(x) = x log(α/x) with α = 2p2d2/c2, we have that

σ22
λ22
log

µ
2p2d2
c2

λ22
σ22

¶
− σ2T

λ22
log

µ
2p2d2
c2

λ22
σ2T

¶
= g(x1)− g(x2),
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where x1 = (σ2/λ2)2 > x2 = (σ2/λ2)
2. Then by a simple Taylor’s expansion

g(x1)− g(x2) ≈ g0(x1)(x1 − x2) =

"
log

Ã
2p2d2
c2

µ
λ2
σ2

¶2!
− 1
#
σ22 − σ2T

λ22
.

Then

V r ≈ c2
2d1

σ21
λ1

"
log

Ã
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µ
λ1
σ1

¶2!
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#
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Since all but the last term on the right are small, we write

V r ≈ c2
2d1

σ21
λ1

"
log

Ã
2p1d1
c1 − c2

µ
λ1
σ1

¶2!
− c2
2c1

#
,

and thus, we conclude that V r =O(1) since λr1 =O(1). Therefore,

V r À V e,

proving that the value of integration is higher for the regular firm. The assertion regarding the

relative value of integration follows along similar lines. ¥
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Correlation ρ V (approximation) V (simulation) kV (app)-V (sim)k/V (sim)

−0.050 20.005 19.820± 0.292 0.933%± 1.509%

−0.100 20.459 20.131± 0.289 1.629%± 1.480%

−0.150 20.907 20.387± 0.249 2.551%± 1.268%

−0.200 21.347 20.691± 0.236 3.170%± 1.190%

−0.250 21.781 21.190± 0.275 2.789%± 1.352%

−0.300 22.206 21.507± 0.301 3.250%± 1.466%

−0.350 22.623 21.889± 0.261 3.353%± 1.247%

−0.400 23.032 22.239± 0.192 3.566%± 0.902%

−0.450 23.432 22.478± 0.170 4.244%± 0.794%

−0.500 23.822 22.885± 0.116 4.094%± 0.530%

−0.550 24.202 23.171± 0.100 4.450%± 0.453%

−0.600 24.572 23.496± 0.151 4.580%± 0.676%

Table 22 [Like TABLE 8 but with lognormal demand]The estimates of value of integration (by analytic

approximations and by simulation) for the regular firm as a function of correlation.
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Correlation ρ PI(D2 > d2) (approximation) PI(D2 > d2) (simulation) kPI(app)-PI(sim)k/PI(sim)

−0.050 1.287% 0.484%± 0.010% 165.909%± 5.610%

−0.100 1.086% 0.424%± 0.010% 156.132%± 6.187%

−0.150 0.893% 0.361%± 0.007% 147.368%± 4.891%

−0.200 0.713% 0.308%± 0.009% 131.494%± 6.968%

−0.250 0.550% 0.257%± 0.008% 114.008%± 6.876%

−0.300 0.407% 0.216%± 0.009% 88.426%± 8.192%

−0.350 0.297% 0.179%± 0.007% 65.922%± 6.753%

−0.400 0.217% 0.151%± 0.006% 43.709%± 5.947%

−0.450 0.159% 0.124%± 0.005% 28.226%± 5.388%

−0.500 0.116% 0.105%± 0.004% 10.476%± 4.375%

−0.550 0.085% 0.089%± 0.002% 4.494%± 4.295%

−0.600 0.062% 0.076%± 0.002% 18.421%± 4.297%

Table 23 [Like TABLE 9 but with lognormal demand]The estimates of regular service violation probality

(by analytic approximations and by simulation) in an integrated network for the express firm as a function

of correlation.
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Correlation ρ PI(D2 > d2) (approximation) PI(D2 > d2) (simulation) kPI(app)-PI(sim)k/PI(sim)

−0.050 6.064% 6.246%± 0.092% 2.914%± 2.861%

−0.100 5.781% 6.009%± 0.083% 3.794%± 2.658%

−0.150 5.501% 5.801%± 0.086% 5.172%± 2.812%

−0.200 5.225% 5.567%± 0.088% 6.143%± 2.968%

−0.250 4.955% 5.304%± 0.074% 6.580%± 2.607%

−0.300 4.689% 5.091%± 0.081% 7.896%± 2.932%

−0.350 4.428% 4.859%± 0.065% 8.870%± 2.439%

−0.400 4.173% 4.650%± 0.042% 10.258%± 1.621%

−0.450 3.923% 4.454%± 0.039% 11.922%± 1.543%

−0.500 3.679% 4.234%± 0.035% 13.108%± 1.437%

−0.550 3.441% 4.052%± 0.051% 15.079%± 2.138%

−0.600 3.210% 3.871%± 0.050% 17.076%± 2.143%

Table 24 [Like TABLE 10 but with lognormal demand]The estimates of regular service violation probality

(by analytic approximations and by simulation) in an integrated network for the regular firm as a function

of correlation.
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Correlation ρ F (approximation) F (simulation) kF (app)-F (sim)k/F (sim)

−0.050 0.520 0.834± 0.003 37.650%± 0.449%

−0.100 0.595 0.855± 0.002 30.409%± 0.326%

−0.150 0.667 0.876± 0.002 23.858%± 0.348%

−0.200 0.734 0.894± 0.003 17.897%± 0.551%

−0.250 0.795 0.912± 0.003 12.829%± 0.573%

−0.300 0.848 0.926± 0.003 8.423%± 0.593%

−0.350 0.889 0.939± 0.003 5.325%± 0.605%

−0.400 0.919 0.949± 0.002 3.161%± 0.408%

−0.450 0.941 0.958± 0.002 1.775%± 0.410%

−0.500 0.957 0.964± 0.001 0.726%± 0.206%

−0.550 0.968 0.970± 0.001 0.206%± 0.206%

−0.600 0.977 0.974± 0.001 0.308%± 0.103%

Table 25 [Like TABLE 11 but with lognormal demand]The estimates of the tightness factor F (by analytic

approximations and by simulation) in an integrated network for the express firm as a function of correlation.
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Correlation ρ F (approximation) F (simulation) kF (app)-F (sim)k/F (sim)

−0.050 0.673 0.665± 0.006 1.203%± 0.921%

−0.100 0.689 0.677± 0.005 1.773%± 0.757%

−0.150 0.704 0.687± 0.005 2.475%± 0.751%

−0.200 0.719 0.699± 0.005 2.861%± 0.741%

−0.250 0.733 0.714± 0.005 2.661%± 0.724%

−0.300 0.747 0.725± 0.005 3.034%± 0.716%

−0.350 0.762 0.738± 0.004 3.252%± 0.563%

−0.400 0.775 0.749± 0.003 3.471%± 0.416%

−0.450 0.789 0.759± 0.003 3.953%± 0.413%

−0.500 0.802 0.772± 0.002 3.886%± 0.270%

−0.550 0.815 0.781± 0.003 4.353%± 0.402%

−0.600 0.827 0.791± 0.003 4.551%± 0.398%

Table 26 [Like TABLE 12 but with lognormal demand]The estimates of the tightness factor F (by analytic

approximations and by simulation) in an integrated network for the regular firm as a function of correlation.
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